Predicting the Current and Future Potential Distributions of Lymphatic Filariasis in Africa Using Maximum Entropy Ecological Niche Modelling

نویسندگان

  • Hannah Slater
  • Edwin Michael
چکیده

Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF), in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease) in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Species distribution modelling of invasive alien species; Pterois miles for current distribution and future suitable habitats

The present study aims to predict the potential geographic distribution and future expansion of invasive alien lionfish (Pterois miles) with ecological niche modelling along the Mediterranean Sea. The primary data consisted of occurrence points of P. miles in the Mediterranean and marine climatic data layers were collected from global databases. All the used models run 100% su...

متن کامل

Using ecological niche modeling to determine avian richness hotspots

Understanding distributions of wildlife species is a key step towards identifying biodiversity hotspots and designing effective conservation strategies. In this paper, the spatial pattern of diversity of birds in Golestan Province, Iran was estimated. Ecological niche modeling was used to determine distributions of 144 bird species across the province using a maximum entropy algorithm. Richness...

متن کامل

Comparing Discriminant Analysis, Ecological Niche Factor Analysis and Logistic Regression Methods for Geographic Distribution Modelling of Eurotia ceratoides (L.) C. A. Mey

Eurotia ceratoides (L.) C. A. Mey is an important plant species in semi-arid landsin Iran. New approaches are required to determine the distribution of this plant species. Forthis reason, geographical distributions of Eurotia ceratoides were assessed using threedifferent models including: Multiple Discriminant Analysis (MDA), Ecological Niche FactorAnalysis (ENFA) and Logistic Regression (LR). ...

متن کامل

A Maximum Entropy/Ecological Niche Modeling Prediction of the Potential Distribution of Leischmaniasis under Climate Change

Leishmaniasis is a life-threatening disease caused by protozoan parasites of the genus Leishmania and is transmitted by the bite of several species of sand fly (subfamily Phlebotominae). Global climate change has the potential to alter the distribution of these insect vectors. Here I use maximum entropy (maxent) ecological niche modeling (ENM) and the Intergovernmental Panel on Climate Change(I...

متن کامل

Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity

Aim Theoretical work suggests that species’ ecological niches should remain relatively constant over long-term ecological time periods, but empirical tests are few. We present longitudinal studies of 23 extant mammal species, modelling ecological niches and predicting geographical distributions reciprocally between the Last Glacial Maximum and present to test this evolutionary conservatism. Loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012